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Abstract—the plane-bi-polar near-field measurement 
technique is a well-known and long-established method for 

determining far-field antenna patterns of medium to high gain 
antennas that is predicated on the use of a very simple 
positioning system that in essence comprises just two rotation 

stages.  Hitherto, this technique has been comparatively 
sparsely deployed however the recent heightened interest in 
utilising articulated multi-axis industrial robots for the 

positioning systems of modern antenna test systems has 
similarly increased the amount of interest that this technique 
has received.  This paper is an extension of the authors’ prior 

work where here, for the first time, the recently developed 
efficient polar near-field to far-field transform is adapted to 
accommodate the plane-bi-polar case.  The adapted plane-bi-

polar non-interpolatory transform is developed with 
preliminary simulation results presented that verify the success 
of the efficient, novel, data processing technique.  The requisite 

plane-polar sampling theorem is examined with implications 
on the computation of the corresponding Bessel series 
discussed. 

Index Plane-bi-polar, near-field, antenna measurements, 

Fourier, Bessel. 

I.  INTRODUCTION 

The plane bi-polar near-field antenna measurement 

system [1, 2] is conceptually similar to the plane-polar [3, 4] 

case except here, the probe sweeps out a circular arc in two 

axes enabling the acquisition of samples across the surface of 

a conceptual flat disk, with that data typically being tabulated 

on a set of concentric rings.  Mechanically, this is a 

comparatively simple positioning system to construct as the 

requirement for a linear translation stage is removed.  The 

guided wave path is also drastically simplified as only two 

rotary joints are required to connect the RF output from the 

scanning near-field probe to the input of the network 

analyser to maintain the phase stability across the acquisition 

plane.  Unfortunately, this mechanical simplification is 

achieved at the expense of increased computational effort 

and complexity.  However, as we shall show, this may be 

overcome in a relatively straightforward manner.  As the use 

of multi-axis industrial robots as probe positioners for near-

field antenna measurements proliferates, so too has the 

interest in utilising these systems for the acquisition of plane-

bi-polar near-field data.  As multi-axis industrial robots 

position a tool, which in our case is an RF probe, through the 

rotation of a series of joints, i.e. rotation stages, this makes 

them sympathetic to plane-bi-polar measurements which 

inherently position the scanning near-field probe similarly 

through a set of rotations, and without the need to synthesise 

a virtual, linear, translation stage with a set of compound 

joint rotations. 

An example test system comprising dual multi-axis 

industrial robots can be seen presented in Figure 1.  Here, 

robot 1, R1, is used for plane-polar radius (or diameter) 

scanning of the probe whilst robot 2, R2, holds the antenna 

under test (AUT) with its boresight direction aligned vertical 

and is used to provide the 360° azimuthal axis rotation.  

However, if instead R1 was to rotate joint J1, i.e. the robot’s 

base azimuth axis which is mounted on the vertical tower, 

and is furthest from the probe, then data would be acquired 

naturally in a plane-bi-polar mode with samples tabulated on 

a plaid, monotonic and equally spaced grid in β, α which 

denote the two rotation angles. 

 

Fig. 1. Plane-polar antenna measurement using dual multi-axis robots 

used to acquire data tabulated on a plane-bi-polar coordinate system. 

The success of this approach is clearly predicated upon 

the availability of a suitable near-field to far-field (FF) data 

transformation algorithm.  A number of different algorithms 

have been proposed for the processing of plane-polar/bi-

polar data and include the optimal sampling interpolation 

(OSI)/fast Fourier transform (FFT) [4, 5, 6] method, with 

non-interpolatory techniques including: Jacobi-Bessel 

transform [7], Fourier-Bessel transform [8], SVD-based 

transform [9] and pseudo-matrix inversion method [10] to 

name but a few.  Recently, an accelerated plane-polar near-

field to far-field transform has been proposed [11] which is 

in essence a generalization and refinement of the technique 

developed in [12] providing improvements in efficiency, 

flexibility and accuracy.  In terms of the organization of this 

paper, Section II shows how the angular spectrum can be 

obtained from measurements taken in a plane bi-polar 

measurement system without recourse to approximation 

through an adaptation of [11].  Results are presented in 



Section III and the paper concludes in Section IV with a 

summary, discussion and plans for future work. 

II. EXTENSION OF ACCELERATED PLANE-POLAR 

TRANSFORM TO PLANE-BI-POLAR MEASUREMENTS 

The plane-polar and plane-bi-polar coordinate systems 

can be seen compared in Figure 2.  Here, the data is assumed 

to be acquired uniformly at the intersection points between 

the radial (blue) and concentric (black) lines, with the 

corresponding unit vectors being denoted by the respective 

blue and black arrows where it is apparent that in each case, 

the data is acquired on a set of concentric rings.  For the case 

of the plane-bi-polar system, the spacing between the 

adjacent rings changes as the “radial” scanning angle β is 

incremented from cut to cut.  Furthermore, we can see that 

each ring is naturally “clocked”, i.e. rotated, with respect to 

the preceding ring by some small angular amount, cf. also 

Figure 3.  Specifically, as we shall show below, each ring is 

rotated by an angle -β/2.  Thus, if we are to adapt the existing 

accelerated polar algorithm to accommodate the plane-bi-

polar case both of these measurement artifacts will need to 

be accommodated within the data processing.  Fortunately, 

and as will be shown below, this is a comparatively straight 

forward task. 

 
Fig. 2. Illustration of plane-polar (left) and plane-bi-polar (right) 

coordinate systems and unit vectors. 
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Fig. 3. Illustration of plane-bi-polar PNF measurement geometry. 

Figure 3 presents a more detailed schematic of the plane-

bi-polar measurement geometry which here also includes an 

illustration of how the, assumed fixed, probe arm length, L, 

is defined and relates to the two angular coordinates, β, α.  

The relationship between the plane-bi-polar coordinates as 

defined in Figure 3 and conventional Cartesian coordinates 

can be expressed as [1, 13], 

 ( )( )ααβ sinsin +−= Lx  (1) 

 ( )( )ααβ coscos −−= Ly  (2) 

Here z is arbitrary but assumed fixed during the 

acquisition, is typically a few wavelengths, and where the 

condition that 180° ≥ β ≥ 0 applies.  The relationship 

between the plane-bi-polar coordinates β, α and the 

(conceptually equivalent) plane-polar coordinates ρ, φ can be 

expressed compactly as [1], 

 2φ α β= −  (3) 

 ( )2 sin 2Lρ β=  (4) 

Here, ρ and φ are the conventional radial and azimuthal 

plane-polar coordinates respectively.  Intuitively, the 

relationship between the respective polar angles can be 

understood as when β = 0° clearly φ = α.  Similarly, when β 

= 180°, φ = α - 90°, and when β = 90°, φ = α - 45°, all of 

which can be seen from the geometry shown in Figure 3.  

From inspection of equation (3), we can see that each ring of 

plane-bi-polar data is clocked by an angle -β/2. 

Considering the transform, by using the formula for a 

multidimensional exchange of variables we may express the 

plane-wave spectrum in terms of the plane-bi-polar near-

field data as [13], 
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Where, u = sinθcosφ, v = sinθsinφ are direction cosines 

and x and y are given by equations (1) and (2) respectively.  

Similarly, and again by virtue of a multidimensional 

exchange of variables, we may express the plane-wave 

spectrum in terms of the plane-polar near-field data as [11, 

13], 
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Here, primed variable denote near-field quantities.  These 

expressions may be evaluated numerically as, by virtue of 

the sampling theorem, they can with no loss of accuracy be 

represented as a summation for the case where band-limited 

antennas are considered [11, 13, 14].  Crucially, for the 

plane-polar case, it was shown in [11] that the plane-wave 

spectrum can be obtained efficiently by evaluating, 
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Here, ℑ denotes the Fourier transform operation, and ℑ-1 

denotes the inverse operation with both of these being 

efficiently evaluated numerically using the mixed-radix FFT 

[14].  The corresponding far-electric-fields can be obtained 

from [11, 13], 
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An extensive validation of the accelerated plane-polar 

transform can be found presented in [11], together with an 

illustration of its successful application in the measurement 

of an electrically large x-band space-based planar SAR 

antenna, thus as a consequence of space constraints this will 

not be repeated herein and is instead left to the open 

literature.  Probe compensated FF data can be obtained using 

standard planar probe pattern compensation [11, 13] 

providing a rotationally symmetrical, i.e. first order, probe 



has been employed, or in the event that a probe with a more 

complex pattern is used, then the probe would need to be 

counter rotated during the near-field acquisition so as to 

remain polarization matched to the AUT when measuring 

each of the two orthogonal near-electric-field component [8], 

cf. a Ludwig 3 type acquisition [13].  Here, joint J6 (i.e. the 

joint positioned closest to the probe) of the industrial robot, 

R1, may be used to implement this counter-rotation with no 

further positioning hardware being necessitated.  From 

inspection of equations (5) and (6), it is clear that their form 

is very similar suggesting that we will be able to adapt 

equation (7) to facilitate the processing of plane-bi-polar 

near-field data.  The aforementioned rotation of each 

concentric ring by the angular amount -β/2 can be 

implemented conveniently, efficiently, and rigorously when 

the measured data is Fourier transformed, cf. Equation (7), 

and is a consequence of the shifting property of the Fourier 

transform [14].  Thus, the accelerated plane-bi-polar 

transform can be expressed as, 
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Where there are N concentric rings of data within the 

near-field data set, and the elemental area of the points on the 

cut at β = 0 is a special case and is weighted as π(δβ)2/(4Nα).  

Each cut is assumed to have an angular span of 2π – 2π/Nα 

and there are Nα equally spaced points in each concentric 

ring.  Here we have assumed that the data provided by the 

one dimensional Fourier transform places the DC frequency 

component at the centre of the spectrum.  The complex 

exponential factor that is within the summation is used to 

account for the clocking of the plane-bi-polar near-field data, 

the sinβn term, cf. equation (5), is used to compensate for the 

variation in widths of the concentric rings, and the complex 

exponential within the final Fourier transform is modified for 

the position of the plane-bi-polar data points, cf. equations 

(1), (2) and (4). 

As was previously the case, the efficiency derives from 

the use of the mixed-radix one-dimensional fast Fourier 

transform (FFT) algorithm, with the rigor and robustness 

stemming from the avoidance of recourse to approximation.  

Note, zero-padding a factor of 2 FFT can yield erroneous 

results.  This is also the reason for the requirement that the 

data is periodic in the α-axis, cf. spherical case, and does not 

span the full 2π radian range with redundant points at both α 

= 0 and α = 2π.  Lastly, this transform is numerically 

equivalent to a discrete Fourier transform, but is circa three 

orders of magnitude faster, and can transform measurements 

of electrically large antennas to the FF in a few seconds on a 

modern workstation.  In summary then, the new accelerate 

plane-bi-polar transform is based on the following 

assumptions: 1) a rotationally symmetric first order probe is 

used, or the probe is counter rotated during the near-field 

acquisition [11], 2) the data is acquired using fixed δβ and 

δα per α cut.  Note, this assumption is common to many 

transforms and is not a limitation of this particular 

implementation per se, and 3) a positive (suppressed) time 

dependency is assumed.  The next section presents results 

obtained from this new transform. 

III. RESULTS 

The use of this accelerated polar transform can be 

illustrated by taking simulated plane-bi-polar near-field data 

and transforming it to the FF whereupon it can be compared 

with FF obtained directly from the antenna simulation 

software.  Figure 4 presents simulated measured plane-bi-

polar near-electric-field components of a parabolic reflector 

antenna with an elliptical cross-section measuring 0.4 m by 

0.3 m, and radiating at 5.0 GHz for the two orthogonal 

tangential polarizations Ex (left) and Ey (right), and where an 

arm length L = 2.0 m was used.  Here, the horizontal axis is 

the measurement “radius” variable β, and the vertical axis 

corresponds to the azimuthal angle α, where both are 

expressed in degrees.  The AUT to probe separation was 0.6 

m (circa ten wavelengths) yielding an estimated maximum 

pattern angle of approximately ±70°.  The algorithm 

developed above was then employed to transform the plane-

bi-polar near-electric-field data to the FF with the resulting 

far-fields being compared to data provided directly from 

reflector antenna simulation software.  Here, an off-pointed 

reflector antenna was employed where the rotation of the 

antenna with respect to the acquisition axes was deliberately 

included to make sure that any natural symmetry within the 

simulated measurement would be broken to further aid the 

verification process [11]. 

 
Fig. 4. Illustration of plane-bi-polar x-polarised near electric field 

component (left) and y-polarised field component (right). 

Here, the sequential clocking of the plane-bi-polar near-

field data is evident from the “sloping” trails of sidelobes 

that are visible in Figure 4, and is a measurement artefact 

that is absent from equivalent plane-polar measurements, and 

the corresponding transformed FF patterns. 

 

Fig. 5. False colour plot of power in Fourier coefficients plotted as a 

function of “radius” variable β. 



This is the phenomena that the complex exponential 

factor embodied in equation (9) seeks to address.  Figure 5 

presents a false-colour checkerboard plot of the intensity of 

the corresponding Fourier coefficients of the plane-bi-polar 

data.  We shall now examine this in the context of the 

sampling theorem.  The standard plane-polar, sampling 

criteria in the angular (i.e. azimuthal) axis can be expressed 

as [6, 11, 15], 

 
( )2 a M

λ π
α

λ
∆ = =

+
 (10) 

Here, the parameter a denotes the maximum radial extent 

(MRE).  This is the radius of a circle that encloses the AUT, 

i.e. the majority of the current sources, which is measured 

from the centre of α rotation.  The addition of a wavelength, 

i.e. one λ, is included to make sure that sufficient Fourier 

terms are included in the representation.  However, this value 

may be increased if greater accuracy is required.  Clearly, the 

MRE has to be less than the maximum radius of the 

acquisition disk if truncation is to be negligible.  However, if 

the AUT is known to be rotational symmetric, then larger 

data point spacing may be adopted without introducing 

unacceptable errors.  Here, M can be interpreted as 

representing the maximum order of Bessel function which 

we can use to place an upper limit on the maximum number 

of Fourier terms required [11], cf. equation (11) below.  This 

can also be seen from Figure 5, where the largest power is 

contained within only the lower order Fourier coefficients, 

i.e. we see a horizontal-band that is centred about M = 0.  In 

this case, the MRE of the antenna was 0.2 m corresponding 

to a maximum mode of MMax = 28 [13].  From inspection of 

this figure we see that the majority of the power is contained 

within those coefficients for which |M| < 28. 

 
Fig. 6. FF x-pol amp pattern, ref. (left) plane-bi-polar NFFFT (right). 

 
Fig. 7. FF x-pol phase pattern, ref. (left) plane-bi-polar NFFFT (right). 

 
Fig. 8. FF y-pol amplitude pattern, ref. (left) plane-bi-polar NFFFT (right). 

 
Fig. 9. FF y-pol phase pattern, ref. (left) plane-bi-polar NFFFT (right). 

The plane-bi-polar near-field data was transformed to the 

FF using equation (9).  Figure 6 (left) presents the FF of the 

x-polarized far-fields plotted as a false-colour checkerboard 

plot tabulated on a regular polar-spherical coordinate system 

of the parabolic reflector antenna.  The right hand side of 

Figure 6 contains an equivalent plot of the FF obtained from 

the new plane-bi-polar transform.  Here, similarly, Figure 7 

presents the equivalent x-polarised phase plots with Figures 8 

and 9 containing the equivalent y-polarised amplitude and 

phase patterns respectively.  From inspection of these plots is 

it clear that the results are in encouraging agreement.  The 

differences which can be seen here are a result of the first 

and second order truncation effects [13].  Thus, the 

attenuation of the pattern at wide out angles is a consequence 

of the finitely large acquisition disk (1st order truncation 

effect onset at ~70°) and the ripple that is evident across the 

pattern is due to spectral leakage (2nd order truncation effect).  

This second effect is most evident on the cross-polar pattern 

shown at the right-hand side of Figure 8.  By way of a further 

comparison, Figure 10 contains iso-level, i.e. contour, plots 

of the x- and y-polarised FF amplitudes.  Here, red contours 

denote the reference FF pattern (truncation free) and the 

black contours are the equivalent patterns obtained from the 

plane-bi-polar transform.  Again, the agreement is very 

encouraging. 

 
Fig. 10. FF comparison iso-level plot of x-polarised amplitude (left), y-

polarised amplitude (right). 

As suggested by equation (10), for the case of an 

electrically large antenna, a large number of high-order 

Bessel functions are required to be computed since, and as is 

also the case for the plane-polar transform, the Fourier 

transform of the complex exponential is computed 

analytically from a truncated infinite series [11], 
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This enables the rapid, accurate, implementation of this 

transform.  Bessel functions, such as these, are generally 

computed using recurrence relations requiring only the first 

couple of terms in the series to be directly computed, with all 

other terms being obtained from these values [16].  Although 

this means that we can determine all of the values needed 
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very efficiently, it does present some difficulties 

computationally.  For the case where the argument, χ, is 

larger than the order of the Bessel function, we may use an 

“upwards” recurrence from J0 and J1 which is always stable.  

Unfortunately however, when the argument, χ, is smaller 

than the order we utilize a “downwards” recurrence relation 

which can suffer from numerical overflows and the resulting 

instabilities.  Thus, we are required to renormalize the values 

for the recurrence relations to remain within the available 

machine precision.  Thus, when the recurrence is completed, 

we are able to correct the result for the various 

renormalization(s) that were applied during the iteration and 

thereby obtain reliable values.  This it turns out, is not only a 

more efficient strategy than the brute force approach of 

computing a large number of (likely) mixed-radix 1D FFTs, 

it is also superior in terms of accuracy and precision. 

IV. SUMMARY AND CONCLUSIONS 

As we have shown, the recently developed accelerated 

polar near-field to far-field transform [11] can be readily 

adapted so that it is amenable to processing plane-bi-polar 

measured data with no loss in computational efficiency or 

rigour.  This transform is rigorous, i.e. it does not rely upon 

approximation, the solution of a linear system of 

simultaneous equations, least squares fitting, etc.  Although 

the FF data will be provided tabulated on an equally spaced 

grid of points in the azimuthal-axis (that will contain a power 

of 2 points if zero-padded to increase resolution [11]) the 

user is free to specify the number and location of points in 

the θ-axis.  Preliminary simulated data was used to validate 

and verify the novel transform against a known truth model 

with very encouraging results attained.  Although an off-

pointed  reflector antenna was used as the basis of these 

measurement simulations, this technique is equally 

applicable to other types of antenna and different frequency 

bands providing only that the majority of the radiated field is 

sampled by the near-field measurement, i.e. the antennas 

have some gain, e.g. ideally circa 15 dB or greater, and that 

the measurements are acquired outside of the reactive region, 

which is in common to other planar near-field methods.  

Since the transformation is based upon the standard plane-

wave spectrum technique, the method is no more sensitive to 

the impact of measurement errors.  Arguably, if the same 

number of points are acquired in each concentric ring, then 

the oversampling this provides helps improve measurement 

quality as the averaging can aid in the resilience of the 

technique to some forms of error, e.g. random sources and 

some forms of scattering.  Clearly, the lack of reliance upon 

approximation within the transform technique also aids in its 

robustness.  However, this is an area of future work which is 

include examining in greater detail the behavior of the 

Fourier coefficients in the presence of noise with the 

intention of exploring possible ways that this can be used to 

further improve the accuracy of the measurement by 

extracting multiple-reflections etc. as well as to obtain 

additional experimental validation. 
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